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Abstract

Motivated by mirror symmetry, we consider a Lagrangian fibration X → B and Lagrangian maps f :
L ↪→ X → B, when L has dimension 2, exhibiting an unstable singularity, and study how their caustic
changes, in a neighbourhood of the unstable singularity, when slightly perturbed. The integral curves of
∇fx, for x ∈ B, where fx(y) = f (y) − x · y, called “gradient lines”, are then introduced, and a study of
them, in order to analyze their bifurcation locus, is carried out.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

This is first of two papers motivated by the attempt of understanding some aspects of the ho-
mological mirror conjecture, when we assume the existence of dual torus fibrations. In it, we are
concerned with the torus fibration T 2n → T n, as a first step in the direction towards generic La-
grangian torus fibrations. In this case mirror symmetry has been studied, under certain hypothesis,
in papers such as [9,2,13,5,6], where the idea that mirror symmetry is a kind of Fourier–Mukai
transform has been developed: given a Lagrangian submanifold L of X supporting a local system,
under certain assumptions, a holomorphic bundle is obtained on a submanifold ofX∨. In all these
papers, a crucial hypothesis is that the caustic of L is empty, that is, the compositionL ↪→ X → B
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has no critical points. This paper, instead, takes the first steps in the direction of including the
caustic. If K ⊂ B denotes the caustic of L, we may think to restrict the fibration to B \K: now
L has no caustic and we may apply what is known in this case and obtain a holomorphic bun-
dle on a certain submanifold of X∨ fibred over B \K; however we realize that the holomorphic
structure presents a monodromy which prevents from extending the holomorphic bundle over
the points of the caustic K. As foreseen in [9], some quantum corrections must be performed
in order to extend the holomorphic structure over points of the caustic. Quantum corrections or
instanton effects are provided by pseudoholomorphic discs in X which bound L. Following [8],
the fibre over x ∈ B of the holomorphic bundle on X∨ is constructed as Lagrangian intersection
Floer homology of L and of the Lagrangian fibre of X over x. This approach is equivalent to
the Fourier–Mukai one when the caustic is empty, but, unlike this, has the advantage of naturally
including pseudoholomorphic discs. Assuming that, near K, Lagrangian intersection Floer homol-
ogy is equivalent to Morse homology defined through the generating function of L, assumption
which still must be clarified and proved, enables us to study gradient lines of ∇fx instead of
pseudoholomorphic discs. This is the idea which leads the development of this paper. The theory
of Lagrangian maps provides a classifications of Lagrangian singularities: in dimension 2 only
folds and cusps are generic and stable; in dimension 3 other singularities appear, and so on. This
suggests us to start by considering the case when L has dimension 2 and so X is the torus fibration
T 4 → T 2. If f is a (local) generating function of L, we plan to study, in a neighbourhood of a
point x ∈ K, the gradient lines of the vector field ∇fx, where fx(y) = f (y) − x · y, and their
bifurcations, and with these to construct Morse homology. Troubles are given by those singular-
ities which appear in dimension 2 as unstable, such as the elliptic umbilic. For these we study
what happens to the caustic and, in the case of the elliptic umbilic, to the bifurcation locus of
gradient lines, when a small perturbation is added to the generating function f. In fact, in the
Fukaya category, Lagrangian maps are considered up to Hamiltonian equivalence, so we expect
to recover the case of L having an unstable singularity by studying the case of a Lagrangian
submanifold L′ exhibiting a stable singularity and Hamiltonian equivalent to L. The analysis of
possible phase portraits of ∇fx should allow to construct the Morse complex, while the study
of reciprocal positions of the caustic and bifurcation locus, providing morphisms of the Morse
complex, should allow to construct a bundle whose holomorphic structure can be extended to the
caustic.

In this paper, after reviewing in Section 2 some aspects about the classification of Lagrangian
singularities, we study in Section 3 how unstable critical points of a Lagrangian map split when
its generating function f is slightly perturbed. We first consider a map whose caustic is reduced
to an elliptic umbilic, in a sense which we will specify, and see that a small perturbation modifies
the caustic in a well-known curve known as tricuspoid. A similar analysis is sketched for maps
exhibiting other unstable singularities, such as the hyperbolic umbilic, the swallow-tail and the
parabolic umbilic, deducing some ideas about the way the problem could be faced. However,
we recognize that, if we are interested in application to mirror symmetry, in dimension 2 the
relevant singularities are the fold and the cusp, which are also stable, and the elliptic umbilic, the
hyperbolic umbilic and the swallow-tail, which, as said, are stable and generic in dimension 3
though unstable in dimension 2. Singularities such as the parabolic umbilic, stable and generic
in dimension at least 4, become relevant only when studying the problem in dimension 3. The
analysis of the gradient lines of ∇fx and their bifurcations are dicussed in Section 4 as a whole.
This is essential to construct the Morse complex, in view of applications to mirror symmetry. In
particular we study which kind of bifurcations can occur in a family of vector fields exhibiting
only saddles and nodes, and, given a bifurcation diagram, when there exists a family of gradi-
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ent vector fields providing that diagram. In [14], the sequel to this paper, we will analyze, in
some specific cases, how the bifurcation locus changes when the generating function f is slightly
perturbed.

2. Lagrangian submanifolds and their singularities

We recall some facts about Lagrangian submanifolds and their singularities, referring to [16]
or [3] for details.

2.1. Lagrangian maps

Let (X,ω) be a symplectic 2n-manifold, which will be denoted simply by X, and L an n-
submanifold of X.

Definition 2.1. An immersion g : L → X is called Lagrangian immersion if g∗ω = 0. If L ⊂ X

and the identical embedding is a Lagrangian immersion, then L is called Lagrangian submanifold.

Definition 2.2. A Lagrangian bundle is a symplectic manifold X endowed with a structure of
smooth locally trivial bundleπ : X → B over a base manifold B, all of whose fibres are Lagrangian
submanifolds of X.

By Darboux’s theorem, any point of X admits a neighbourhood with canonical coordinates,
that is, coordinates (y1, x1, . . . , yn, xn) which are both canonical symplectic coordinates of X and
such that the functions xi are constant along the fibres of the bundles.

Definition 2.3. Let π : X → B be a Lagrangian bundle and g : L → X a Lagrangian immersion.
We call Lagrangian map the composite map π ◦ g : L → B. The set K of critical values of π ◦ g
is called caustic of the Lagrangian immersion g (or of the Lagrangian map π ◦ g).

If non-empty, the caustic of a general Lagrangian map is an (n− 1)-submanifold of B with
singularities. A classification of singularities of Lagrangian maps is available and is obtained from
the classification of singularities of smooth maps. Lagrangian maps are traced back to smooth
functions by means of their generating function: letL ↪→ X be a Lagrangian submanifold,p ∈ L a
point, {yi, xi} a system of canonical coordinates near p, then there is a set of indices J ⊂ {1, . . . , n}
such that, if I = {1, . . . , n} \ J , then {yi, xj} are local coordinates of L near p, with i ∈ I and j ∈ J ,
and there exists a smooth function f in the variables {yi, xj}, defined up to addition of a constant,
such that L is determined by the equations

xj = ∂f

∂yi
, yi = − ∂f

∂xj
(1)

conversely, given a function f as before, Eqs. (1) define a Lagrangian submanifold. The function
f is called generating function of L.

Definition 2.4. Two Lagrangian bundles are said to be Lagrangian equivalent if there exists a
bundle diffeomorphism between them, taking fibres to fibres, and mapping one symplectic form
to the other. Analogously, two Lagrangian maps are said to be Lagrangian equivalent if there
exists a Lagrangian equivalence of the corresponding fibre bundles sending the domain of the first
map to that of the second.

If two maps are Lagrangian equivalent then their caustic are diffeomorphic. The converse of
this statement is false.
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In studying the classification of Lagrangian singularities, it is more convenient to enlarge
the number of variables and describe a Lagrangian germ by a function of the enlarged set
of variables and called generating family: for a given Lagrangian germ, a generating families
is not uniquely determined, however the class defining equivalent Lagrangian germs can be
described. If f (yi, xj) is the generating function of a germ of a Lagrangian submanifold L,
then

F (z, x) = f (zi, xj) + 〈zj, xj〉
is a generating family of L. Given F, then L can be described as the set

L = {(y, x)|∃zwith ∂F/∂z = 0, y = ∂F/∂x}
and its caustic K as

K = {x|∃zwith ∂F/∂z = 0, det(∂2F/∂2x) = 0}
Let D0 be the group of germs at 0 of diffeomorphisms of R

n preserving 0.

Definition 2.5. Two germs f1 and f2 of functions at 0 are D0-equivalent if there exists a germ
φ ∈ D0 such that f1 = f2 ◦ φ.

Two germs f1 and f2 of functions at 0 are stably D0-equivalent if there exists a germ φ ∈ D0
and a non-degenerate quadratic form Q in additional variables such that f1 = f2 ◦ φ +Q.

Theorem 2.6. Germs of Lagrangian maps are Lagrangian equivalent if and only if their gener-
ating families are stably equivalent.

2.2. The Whitney topology

Let X be a 2n-symplectic manifold and X → B a Lagrangian bundle. Generating functions of
Lagrangian maps are elements ofC∞(Rn). We endow the space of smooth functionC∞(Rn) with
the Whitney C∞ topology (see also [10,7]).

Definition 2.7. For every non-negative integer k, and for every subsetU ⊂ Jk(Rn), where Jk(Rn)
denotes the space of k-jets of smooth functions, let M(U) = {f ∈ C∞(Rn)|jkf (Rn) ⊂ U}. The
family of sets {M(U)} forms a basis for the Whitney Ck topology on C∞(Rn). The Whitney C∞
topology is the topology with basisW = ∪∞

k=0Wk, whereWk is the set of open subsets ofC∞(Rn)
in the Whitney Ck topology.

Endowed with the Whitney C∞ topology, C∞(Rn) is a Baire space, so every residual subset
is dense.

Definition 2.8. A Lagrangian map is said to be Lagrangian stable if every nearby Lagrangian
map, in the Whitney topology, is Lagrangian equivalent to it.

It can be proved that a germ of a Lagrangian map given by a generating family F is Lagrangian
stable if and only if F is a versal deformation of f (yi, 0), and that its caustic is a component of
the bifurcation set of its generating family.

Definition 2.9. A property P of smooth functions in C∞(Rn) is generic if:

1. CP = {f ∈ C∞(Rn)|f satisfiesP} contains a residual subset of C∞(Rn);
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2. let f ∈ CP and suppose g is Lagrangian equivalent to f, then g ∈ CP .

A quasi-norm, and so a metric, generating the WhitneyC∞ topology, can be defined onC∞(Rn)
(see again [10,7] for details), so that it makes sense to talk of small perturbations of a function
f ∈ C∞(Rn).

2.3. Classifications of Lagrangian singularities

According to Theorem 2.6, the problem of classifying Lagrangian singularities is reduced to
classify singularities of functions up to stably D0-equivalence. The next theorem explains what
happens in low dimensions. For a list of normal forms see [3] or [16].

Theorem 2.10. The germs of generic Lagrangian maps L ↪→ X → B, with L of dimension
n ≤ 5, are stable and belong to a finite number of classes of Lagrangian equivalence. When
n > 5 moduli appear, which in higher dimensions become functional moduli. A classification of
generic Lagrangian singularities exists for n ≤ 10.

When n ≤ 3, the possible generating functions, denoted by letters A or D, together with an
index which represents the Milnor number, are:

• n ≥ 1

the foldA2 : f (y1) = y3
1 (2)

• n ≥ 2

the cuspA3 : f (y1, x2) = ±y4
1 + x2y

2
1 (3)

• n ≥ 3

the swallow-tailA4 : f (y1, x2, x3) = y5
1 + x2y

3
1 + x3y

2
1 (4)

the hyperbolic umbilic or purseD+
4 : f (y1, y2, x3) = y3

1 + y1y
2
2 + x3y

2
1 (5)

the elliptic umbilic or pyramidD−
4 : f (y1, y2, x3) = y3

1 − y1y
2
2 + x3y

2
1 (6)

3. Perturbations of two-dimensional unstable singularities

Let X be a 4-symplectic manifold and X → B a Lagrangian bundle. When Lagrangian sub-
manifolds have dimension 2, only folds and cusps can appear locally as singularities of generic
stable Lagrangian maps, however other singularities can appear as non-generic ones. In this case,
such singularities are not stable and break in folds and cusps as a consequence of any generic
perturbations.

Suppose that a Lagrangian map has an unstable critical point at p and we want to study how this
singularity decomposes after a small perturbation. To this purpose, consider a small perturbation
f ′, which we can suppose supported on a disc D containing p. This defines a new generating
function f̃ = f + f ′ and a Lagrangian submanifold L̃; L and L̃ coincide outside a compact
subset D′ of X and their caustics differ only in f (D) ⊂ B.

Being interested, as a first step, in a Lagrangian torus fibration with two-dimensional smooth
fibres, and since the decomposition of an unstable singularity is a local problem, we can consider
the Lagrangian fibration R

4 → R
2. We use coordinates (x1, x2) on the base and (y1, y2) on the

fibres.
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3.1. The elliptic umbilic

We refer to the generating function

f (y1, y2) = 1
3y

3
1 − 2y1y

2
2 (7)

defining the Lagrangian map

x1 = y2
1 − y2

2, x2 = −2y1y2 (8)

as the elliptic umbilic in dimension 2. It has an unique critical point, the origin (0, 0) of the
(y1, y2)-plane: it is neither a fold nor a cusp, so it is unstable. The caustic is the subset {(0, 0)} of
the (x1, x2)-plane. To study how it splits when f is slightly perturbed, we add a perturbation f ′
and consider the new generating function f̃ = f + f ′.

Proposition 3.1. For a generic and small f ′, f̃ has caustic diffeomorphic to a tricuspoid, the
curve shown in Fig. 1 (see [3] for a definition of tricuspoid).

Having only folds and cusps, the tricuspoid is stable. If f ′(y1, y2) = ε
2 (ay2

1 + by1y2 + cy2
2) is

a generic polynomial of degree 2, the critical locus turns out to be a circle in the (y1, y2)-plane
with centre

C =
(
− ε

4
(a− c),

ε

4
b
)

and radius
ε

4
|a+ c|

in this case the caustic is a tricuspoid and can be explicitly computed (see [3]).

Fig. 1. The tricuspoid.
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Fig. 2. The pyramid.

Proof. By hypothesis, in the Whitney topology ofC∞(R2) f̃ lies in a small neighbourhood of f, so,
if T is a tubular neighbourhood of graph(f ) ⊂ R

2 × R, we can identify f̃ with a section ofC∞(T )
and find a deformation f̃ from f to f̃ . The Milnor number of f is 4, thus a versal deformation F of f
has four parameters and can be written as F (y1, y2) = f (y1, y2) + a0 + a1y1 + a2y2 + a3y

2
1. By

definition, any other deformation G of f is obtained from F asG(y, λ) = F (H(y, λ), Φ(λ)), where
y = (y1, y2), λ represents the parameters of the deformation, H is a family of diffeomorphisms
parameterized by λ and Φ is a smooth function of λ. Observe that F is a generating family of the
elliptic umbilic in dimension 3 (in fact f is the normal form of the singularities D−

4 ): it defines a
generating function (see Eq. (6))

f̄ (y1, y2, x3) = y3
1 − y1y

2
2 + x3y

2
1

and a Lagrangian map

x1 = y2
1 − y2

2 + 2x3y1, x2 = −2y1y2, y3 = −y2
1

whose caustic KF , showed in Fig. 2, is the well-known pyramid.
Note that f is recovered from f̄ by setting x3 = 0, so that the caustic Kf of f can be identified

with the intersection KF ∩ {x3 = 0} between the pyramid and the plane x3 = 0. Observe instead
that the intersection KF ∩ {x3 = t} is, for t �= 0, a tricuspoid. For f ′ sufficiently small, f̃ is a
small deformation of the elliptic umbilic in dimension 3, and being this stable, it follows that the
causticKf̃ of f̃ , in suitable coordinates x′

1, x′
2 and x′

3, is still the pyramid. On the other hand, the
versality of F ensures the existence of a map Φ such that Φ(x3) = x′

3 and relating, as explained,
f̃ to F. Choosing f ′ sufficiently small, Φ will be enough close to the identity, in the Whitney
topology, to be injective. SinceKf̃ = Kf̃∩{x3=0}, it follows that the causticKf̃ of f̃ is generically
diffeomorphic to a tricuspoid. �

3.2. The hyperbolic umbilic

We refer to the generating function

f (y1, y2) = 1
3 (y3

1 + y3
2) (9)
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Fig. 3. The caustic of a small perturbation of the hyperbolic umbilic.

whose associated Lagrangian map is

x1 = y2
1, x2 = y2

2

as the hyperbolic umbilic in dimension 2. The critical locus is given by y1y2 = 0. The caustic is
the set {x1x2 = 0 : x1, x2 ≥ 0}.
Proposition 3.2. A generic small perturbation of the hyperbolic umbilic in dimension 2 has a
caustic diffeomorphic to the non-connected subset shown in Fig. 3.

Proof. The argument is the same as the one used in the proof of Proposition 3.1. �

3.3. Other singularities

In dimension 2 we can consider other unstable germs of functions and try to study how their
caustics change, when slightly perturbed, by using their versal deformations. As seen in the
previous subsections, being the elliptic and hyperbolic umbilics, and also the swallow-tail (see
[3]), stable in dimension 3, the study of the generating functions (7) and (9), in dimension 2,
was recovered from the analysis of the generating functions (6) and (5), in dimension 3, by
fixing one parameter. Instead, consider, for instance, the parabolic umbilic (see [4]), which is
stable in dimension 4: it is necessary to fix two parameters to recover the case of dimension 2
from the stable case in dimension 4. So, if interested in some applications to mirror symmetry
when the total space of the fibration has complex dimension 2, it seems to be not so relevant to
consider those unstable singularities, such as the parabolic umbilic, whose versal deformations
define stable singularities in dimension greater than 3: indeed, a generic orbit of Hamiltonian
equivalence containing a Lagrangian map exhibiting an unstable singularity, such as the elliptic
or hyperbolic umbilic, after a small perturbation, still will contain a Lagrangian map with such
singularity; this is no longer true if the singularity is, for example, a parabolic umbilic.
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4. Gradient lines and their bifurcations

4.1. Gradient lines of a Lagrangian map

Given a Lagrangian map L ↪→ X → B with generating function f, where we always assume
X = R

4 and B = R
2, and fixed a metric on X, we define a family of functions fx : R

2 → R,
parameterized by x ∈ B, as fx(y) = f (y) − x · y, and consider a dynamical system on each fibre
Xx = R

2 of X, over x, as follows:

dy

dt
= ∇fx (10)

where ∇ is the gradient induced by the metric on X.

Definition 4.1. A curve y:(a, b) → Xx, with a, b ∈ R ∪ {+∞,−∞}, is called a gradient line if
it is a solution of (10).

Note that the set of critical points of ∇fx coincides with the intersection L ∩Xx.
Lemma 4.2. If x /∈ K, where K is the caustic of L, then fx has only non-degenerate critical points
(in other words, fx is a Morse function).

Proof. If y is a critical point offx, then ∇fx(y) = ∇f (y) − x = 0. If x /∈ K thenHf (y) = Hfx(y)
has maximal rank. �

Gradient vector fields share the following feature.

Lemma 4.3. If f has only finitely many non-degenerate critical points, then ∇f has finitely
many fixed points all of which are hyperbolic and no other periodic orbits.

Proof. See [15]. �

The Morse index of a non-degenerate critical point y of f is defined as the number of negative
eigenvalues of the Hessian Hf (y). In dimension 2, Lemma 4.3 implies that if x does not belong
to the caustic, we expect as critical points of ∇fx only unstable nodes, saddles and stable nodes,
identified by Morse index respectively equal to 0, 1 and 2.

4.2. Bifurcation points of a Lagrangian map

Definition 4.4. A point x ∈ B is a bifurcation point of f if and only if x /∈ K and ∇fx is not
Morse–Smale (see [7] or [12] or [15] for the definition of Morse–Smale vector field).

Corollary 4.5. Let x be a bifurcation point, then there exist two critical points y1 and y2 of ∇fx
such thatWu(y1) andW s(y2) do not intersect transversely, whereWu andW s denote respectively
the unstable and stable manifold of critical points.

Proof. It is a direct consequence of the definition of Morse–Smale vector field and of the fact
that x /∈ K and that ∇fx is a gradient vector field. �

Remark 4.6. Observe that for vector fields on 2-manifolds, the Morse–Smale condition is equiv-
alent to structural stability.
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Fig. 4. A saddle-to-saddle separatrix.

In dimension 2, the critical points in Corollary 4.5 are saddles. Since the stable and unstable
manifolds of a saddle are each the union of two of the four separatrices of the saddle, a non-
transversal intersection of Wu(y1) and W s(y2) means that y1 and y2 have a common separatrix,
or, in other words, that there is a gradient line from y1 to y2. We call saddle-to-saddle separatrix
such homoclinic orbit.

Proposition 4.7. A saddle-to-saddle separatrix is not structurally stable.

Proof. See [1]. �
Fig. 4 shows the bifurcation given by a saddle-to-saddle separatrix from s1 to s2.
Observe that the structurally stable vector fields X0 and X1, though orbitally equivalent, are

not orbitally equivalent under deformations, in the sense that, if φ is the homeomorphism of the
plane mapping the phase portrait of X0 to the phase portrait of X1 and respecting the sense of
the flow, and if Φ a homotopy between the identity and φ, with parameter space [0, 1], then there
exists t ∈ (0, 1) such that Φ(, t) is not a homeomorphism (in other words, as it is qualitatively
evident, a continuous deformation of the phase portrait of X0 to the one of X1, respecting the
direction of the flow, contains the phase portrait of the unstable vector field Xbif). Thus, for a
generic family of vector fields exhibiting two saddles, near an element having a saddle-to-saddle
separatrix, there are two classes of vector fields up to orbitally equivalence under deformations.

Denote by M(y1, y2) the moduli space of unparameterized gradient lines from a critical point
y1 to a critical point y2.

Proposition 4.8. If ∇fx is Morse-Smale and M(y1, y2) �= ∅ then

dimM(y1, y2) = ind(y1) − ind(y2) − 1

Proof. See for example [7]. �
This implies that gradient lines from y1 to y2 exist generically only if the Morse index of y1 is

greater than the Morse index of y2, and they are stable.
Observe that, also for x ∈ K, the vector field ∇fx is not Morse–Smale: what happens is that

the nature or the number of critical points of ∇fx change. These bifurcations are called local
bifurcations, because it is enough to study the vector field in a neighbourhood of the degenerate
bifurcating critical points. Instead, those bifurcations involving a lack of transversality between the
stable and unstable manifolds of two critical points, as in the case of a saddle-to-saddle separatrix,
are called global, since involving global properties of the flow of the field ∇fx (see [11]).
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Definition 4.9. The bifurcation locus B of f is the set of bifurcation points of f. The diagram
containing the caustic K and the bifurcation locus B of f in B = R

2 is the bifurcation diagram of f.

Each point x of a bifurcation diagram gives information about critical points and existence
of saddle-to-saddle separatrices of ∇fx. Far from the caustic K, the vector field ∇fx exhibits a
certain number of saddles s1(x), . . . , sn(x), so we can define components Bi,j of the bifurcation
locus B as the set of points x such that ∇fx exhibits a gradient line γsi(x)sj(x) from si(x) to sj(x).

Proposition 4.10. Far from K and from other components ofB,Bi,j , if non-empty, is an immersed
submanifold of codimension 1.

Proof. Let S(si(x0)) and S(sj(x0)) be respectively the separatrices of si(x0) and of sj(x0) which
intersect, at x0 ∈ Bi,j , in the gradient line γsi(x0)sj(x0). Consider a neighbourhood N(x0) of x0
such that N(x0) does not intersect K or other components of B different from Bi,j , then, for all
x ∈ N(x0), the vector field ∇fx, if structurally stable, belongs to two distinct classes V1 and V2
up to orbital equivalence under deformations. Define ψ : N(x0) → R as

ψ(x) =
{

dist(S(si(x)), S(sj(x)))2 x ∈ V1

−dist(S(si(x)), S(sj(x)))2 x ∈ V2

Note that ψ is smooth everywhere, because the family fx depends smoothly on x, and that, if
non-empty, Bi,j = ψ−1(0) (this is true because N(x0) does not intersect K or other components
of B different from Bi,j: in fact if a saddle sk(x), with k �= i, j, were a limit point of both S(si(x))
and S(sj(x)), then ψ(x) = 0 though there is no gradient line from si(x) to sj(x)). Generically, ψ
is a Morse function, thus B is an immersed submanifold of N(x0); moreover, far from its critical
points, ψ is transversal to 0 ∈ R, so Bi,j is a submanifold of N(x0) of codimension 1. �

In a similar way we can define subsets B(i,j),(k,l) of B as the set of points x ∈ B where ∇fx
exhibits both the exceptional gradient lines γsi(x)sj(x) and γsk(x)sl(x).

Corollary 4.11. Far from K and from other components of B \ (Bi,j ∪ Bk,l), B(i,j),(k,l), if non-
empty, is an immersed submanifold of codimension 2.

Proof. Define, in a neighbourhood N(x0) of a point x ∈ B(i,j),(k,l) which is far from K and other
components of B \ (Bi,j ∪ Bk,l), a function ψ : B → R

2 as ψ(x) = (ψij, ψkl), where ψij and ψkl
are as in the proof of Proposition 4.10, and note that B(i,j),(k,l) = ψ−1(0) and {0} has codimension
2 in R

2. �

For a generic f, B(i,j),(k,l) = Bi,j ∩ Bk,l. It is clear that three exceptional gradient lines in the
same phase portrait is a bifurcation of codimension greater than 2, so, generically, it does not
occur in dimension 2. Therefore, B can be decomposed into strata Bi,j and B(i,j),(k,l), whose
codimension is respectively 1 and 2.

Whether exceptional gradient lines appear or not, or in other words, whether the subsets Bi,j
and B(i,j),(k,l) are non-empty, it depends on the family of vector fields. We will analyze those cases
which we need to study the bifurcation diagram of the cusp and of the elliptic umbilic. Since we
are dealing with the family ∇fx, we may assume that all the elements of the family are gradient
vector fields, in order to avoid troubles with periodic orbits.
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4.3. A family of vector fields with two saddles

Consider a 2-parameters family of gradient vector fields Xx exhibiting two saddles s1 and s2.
Consider a structurally stable element Xs of the family. By definition of stability, there exists a
neighbourhood U of s such that, for every t ∈ U, Xt is conjugated to Xs. On the boundary ∂U of
U we can expect to meet a bifurcation point b, where Xb presents a saddle-to-saddle separatrix.

Proposition 4.12. A point b ∈ B ∩ ∂U can belong to either B1,2 or B2,1.

Proof. The saddle-to saddle separatrix of Xb can be given by either Wu(s1) ∩W s(s2) or by
W s(s1) ∩Wu(s2), which means that b belongs respectively to B1,2 or to B2,1. �

By Proposition 4.10, both B1,2 and B2,1 have codimension 1.

Lemma 4.13. B1,2 ∩ B2,1 = ∅. The intersection of two components B1
ij and B2

ij of Bij is non-

empty provided the saddle-to-saddle separatrices γ1
ij and γ2

ij , appearing respectively at points of

B1
ij and B2

ij , are obtained as intersection of the same pair of separatrices of s1 and s2.

Proof. Let b ∈ B1,2 ∩ B2,1, then Xb exhibits two saddles and, between them, two saddle-to-
saddle separatrices with opposite directions; consider in R

2 a close curve C containing s1 and s2,
then the Poincaré index indP(C) of C would be equal to −1, while, on the other hand, indP(C) =
indP(s1) + indP(s2) = −2. This proves the first statement.

For t ∈ B1
ij ∩ B2

ij , suppose the gradient lines γ1
ij and γ2

ij of Xt are obtained as intersection of
different pairs of separatrices of the saddles, then the phase portrait ofXt exhibits two exceptional
gradient lines between the two saddles, giving a contradiction as shown in the first part of the
proof. Otherwise, no contradiction arises at t, since only one saddle-to-saddle separatrix appears
in the phase portrait ofXt . Moreover, if α, β, γ and δ denote the four subsets determined in R

2 by
B1
ij and B2

ij , then the two classes of orbitally equivalent vector fields under deformation are given
by x ∈ α ∪ γ and x ∈ β ∪ δ (see Fig. 5). �

Fig. 5. The intersection of two components of Bij .
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Fig. 6. The bifurcation from U1 to U2.

4.4. A family of vector fields with two saddles and one node

Consider a 2-parameters family of gradient vector fields Xx with two saddles s1 and s2 and
an unstable node n. We want to understand which kind of bifurcations, that is, which kind of
saddle-to-saddle separatrices, the family can exhibit. Consider, if existing, a structurally stable
elementXs of the family, such that its phase portrait contains both the gradient lines γns1 and γns2 ,
from n to respectively s1 and s2. Structural stability ensures the existence of an open connected
neighbourhood U1 of s in R

2 such that, for every t ∈ U1, the phase portrait of Xt is orbitally
equivalent to the phase portrait of Xs. Among such neighbourhoods of s we can assume U1 to be
maximal.

Proposition 4.14. IfB ∩ ∂U1 �= ∅, a point t ∈ B ∩ ∂U1 belongs to eitherB1,2 orB2,1: the saddle-
to-saddle separatrix γsisj is obtained as intersection of γnsj with one of the two components of
Wu(si); at t, where γsisj appears, γnsj breaks.

Proof. For t ∈ B ∩ ∂U1, the saddle-to-saddle separatrices which can be exhibited in the phase
portrait of Xt are γs1s2 and γs2s1 , implying that t belongs respectively to B1,2 and B2,1. Consider,
for example, γs2s1 (γs1s2 can be treated similarly): γs2s1 = Wu(s2) ∩W s(s1); as shown in Fig. 6 the
only connected component ofW s(s1) which can intersectWu(s2) is γns1 , while both the unstable
separatrices of s2, the connected component of Wu(s2), can intersect W s(s1). This implies that
when, at the bifurcation point t, γs2s1 appears, γns1 breaks. �

Let U2 be a (maximal) open connected subset such that Xt is structurally stable for all t ∈ U2
and Bij ∩ ∂U1 ∩ ∂U2 �= ∅.

Proposition 4.15. For all t ∈ U2, the phase portrait of Xt does not exhibit the gradient line
γnsj . At a point t ∈ ∂U2 ∩ B, two pairs of separatrices, one of si and one of sj , can intersect in
a saddle-to-saddle separatrix: in one case, described in Proposition 4.14 and shown in Fig. 6, t
belongs to Bij , moreover, after the bifurcation, the line γnsj appears in the phase portrait of Xt ;
in the other case, analyzed in Section 4.3 for a family of vector fields with two saddles, t belongs
to Bji, moreover after the bifurcation no gradient line γnsj appears in the phase portrait of Xt
(see Fig. 7).

Proof. That for t ∈ U2 the phase portrait of Xt does not contain γnsj is a consequence of
Proposition 4.14. Setting for simplicity i = 2 and j = 1 as in the proof of Proposition 4.14,
the two pair of separatrices of s1 and s2 that can intersect at t ∈ ∂U2 ∩ B are shown in Figs. 6 and
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Fig. 7. The bifurcation from U2 to U3.

7. In the first case, the saddle-to-saddle separatrix is γs2s1 = Wu(s2) ∩W s(s1), so t ∈ B21, and after
the bifurcation W s(s1) = γns1 . In the second case, shown in Fig. 7, γs1s2 = Wu(s1) ∩W s(s2), so
t ∈ B12. Observe moreover that two separatrices of s2, among those not intersecting withWu(s1)
in γs1s2 , determines in R

2 two disjoint subsets, one containing n and one containing s1, which
implies that after the bifurcation γns1 does not appear in the phase portrait ofXt (so the bifurcation
is of the type described in Section 4.3). �

Let U3 be a (maximal) open connected subset such that Xt is structurally stable for all t ∈ U3
and Bji ∩ ∂U2 ∩ ∂U3 �= ∅.

Proposition 4.16. For all t ∈ U3, the phase portrait of Xt does not exhibit the gradient line
γnsj . At a point t ∈ ∂U3 ∩ B, two pairs of separatrices, one of si and one of sj , can intersect in
a saddle-to-saddle separatrix: in one case, described in Proposition 4.15 and shown in Fig. 6, t
belongs to Bji, and after the bifurcation the phase portrait of Xt does not exhibit the line γnsj ; in
the other, shown in Fig. 8, t belongs to Bij , and after the bifurcation also the phase portrait of
Xt does not exhibit the line γnsj ; both bifurcations are of the type analyzed in Section 4.3 for a
family of vector fields with two saddles.

Proof. The proposition can be proved as done for Proposition 4.15. The saddle-to-saddle sepa-
ratrices at t ∈ ∂U3 ∩ B, in the two cases, are shown respectively in Figs. 7 and 8. �

Let U4 be a (maximal) open connected subset such that Xt is structurally stable for all t ∈ U4
and Bji ∩ ∂U3 ∩ ∂U4 �= ∅.

Proposition 4.17. For t ∈ U4, the phase portrait of Xt does exhibit the gradient line γnsj (see
Fig. 8).

Proof. It follows from Proposition 4.16. �

Fig. 8. The bifurcation from U3 to U4.
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Fig. 9. The bifurcation from U1 to U2.

Note that γnsj has a different winding around si for t ∈ U1 and t ∈ U4.

Lemma 4.18. B1,2 ∩ B2,1 = ∅. The intersection of two componentsB1
ij andB2

ij ofBij is non-empty

provided the saddle-to-saddle separatrices γ1
ij and γ2

ij of B1
ij and B2

ij are obtained as intersection
of the same pair of separatrices of s1 and s2.

Proof. See the proof of Lemma 4.13. �

4.5. A family of vector fields with three saddles and one node

Consider a 2-parameter family of gradient vector fields Xx exhibiting three saddles s1, s2 and
s3 and an unstable node n. Consider a structurally stable element Xs of the family, such that its
phase portrait contains all the gradient lines γnsi for i = 1, 2, 3, then there exists a neighbourhood
U1 of s such that, for every t ∈ U1, the phase portrait of Xt is orbitally equivalent to the one
of Xs and so it shows the same qualitative features. We can assume U1 to be maximal among
such neighbourhoods of s. At a point t ∈ ∂U1, the vector field Xt can exhibit one among the
saddle-to-saddle separatrices γsisj , implying t ∈ Bij . We have γsisj = Wu(si) ∩W s(sj): in this
caseW s(sj) = γnsj , and so at t, where γsisj appears, γnsj breaks. Moreover, unlike what described
for a family of vector fields exhibiting two saddles and a node, the choice of the component of
Wu(si) is fixed by the presence of γnsk , for k �= i, j. In Fig. 9 the case of the saddle-to-saddle
separatrix γs2s1 is outlined.

Let U2 be a (maximal) open connected subset such that Xt is structurally stable for all t ∈ U2
and Bij ∩ ∂U1 ∩ ∂U2 �= ∅. For t ∈ U2, the phase portrait of Xt contains the gradient line γnsi and
γnsk for k �= i, j, but not γnsj . Note that two of the separatrices of si determine two subsets in the
plane, one containing the node n and the saddle sk, k �= i, j, and the other containing the saddle sj .
This implies that Wu(sj) ∩W s(sk) = W s(sj) ∩Wu(sk) = ∅, thus ∂U2 ∩ Bjk = ∂U2 ∩ Bkj = ∅.
Instead, ∂U2 can intersect Bi,j , as just described, and also Bj,i, Bi,k or Bk,i. As to the intersection
with Bj,i, it holds what already outlined and shown in figures of Section 4.4: indeed, a separatrix
of sj divides the plane into two subsets, one containing the saddle sk and its separatrices and
one containing the pair of separatrices of si and sj intersecting in the saddle-to-saddle separatrix
γsj,si ; moreover, when γsj,si breaks, the phase portrait of Xt does not exhibit γn,si . Instead, for
what concerns Bi,k, observe that the gradient line γnsj does not appear in the phase portrait ofXt ,
so it follows that W s(sk) = γnsk can intersect both the separatrices defining Wu(si), as shown in
Figs. 10 and 11. Analogous considerations hold for Bk,i.

From Fig. 10 we see that for t ∈ U3 no intersection is possible between the stable and unstable
manifolds of s1 and s3, so ∂U3 can intersect onlyB12,B21,B23 orB32. From Fig. 11 we see instead
that for t ∈ U3 only B13, B31, B23 and B32 can intersect ∂U3.
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Fig. 10. The bifurcation from U2 to U3 (1st case).

We can resume what said in the following, very general, proposition.

Proposition 4.19. The gradient line γsisj can appear if a component of Wu(si) can intersect
a component of W s(sj). Whether this is possible and which components can actually intersect
depends on the separatrices of the third saddle sk and on the gradient lines γnsl , l = 1, 2, 3,
appearing in the phase portrait.

As to intersection of bifurcation lines, we will analyze some cases when studying the bifur-
cation locus of perturbations of the elliptic umbilic. The caustic, as we will see, imposes further
constraints on the possible intersections.

4.6. A family of vector fields with saddles and nodes

In general, to a family Xx, x ∈ R
2, of planar vector fields, having nodes n1, . . . , nα, and

saddles s1, . . . , sβ, we can associate a bifurcation diagram given by the bifurcation locus B
with its components Bij and B(ij),(k,l). A proposition similar to 4.19 can be formulated also
in this case, explaining where, depending on the phase portrait of Xx, the gradient lines γsisj
appear.

Proposition 4.20. LetU ⊂ R
2 be an open connected subset such that for every x ∈ U, the vector

fields Xx are structurally stable and orbitally equivalent. Then ∂U can intersect Bij if and only if
Wu(si) and W s(sj) lie in the same connected component determined in the phase portrait of Xx
by:

• the separatrices of the remaining saddles of Xx;

Fig. 11. The bifurcation from U2 to U3 (2nd case).
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• the gradient linesγnksj orγsjnk , respectively ifnk is an unstable or stable node, for k = 1, . . . , α
and j = 1, . . . , β.

As to intersection of bifurcation lines, as said, generically, B(i,j),(j,k) = B(i,j) ∩ B(j,k). A neces-
sary condition for B(i,j),(k,l) to be non-empty is that there exists a vector field whose phase portrait
can exhibit both the exceptional gradient lines γsisj and γsksl . Moreover, in a neighbourhood N(t)
of t ∈ B(i,j),(k,l), the saddle-to-saddle separatrices generically break, and the phase portrait of
∇fx, for x ∈ N(t), must be recovered continuously from the phase portrait of ∇ft . In particular,
if t ∈ B(i,j),(j,k), the exceptional gradient lines γsisj and γsjsk , can also break inN(t) in such a way
to form the saddle-to-saddle separatrix γsisk , implying t ∈ B̄(i,k). As to intersection of bifurcation
lines, we will consider some examples when studying perturbations of the elliptic umbilic.

Definition 4.21. Given a bifurcation diagram, expressions as “the diagram is allowed” or “per-
mitted” will be used to mean that there exists a continuous family of planar vector fields providing
the given bifurcation diagram.

For example, a bifurcation diagram, such that Bij ∩ Bji �= ∅, is not allowed.
Observe also that a bifurcation diagram contains information about the existence of non-generic

gradient lines but no information about the number and nature of critical points.

4.7. Families of gradient fields

Given an allowed diagram, the problem is now to understand, at least in those example we
are concerned with, when there exists a family of vector fields of the form ∇fx, where fx(y) =
f (y) − x · y with f : R

2 → R. The first step is to construct a family of gradient vector fields
whose bifurcation diagram is the given one, and then to look for a family with the required
dependence from the parameter.

Lemma 4.22. Suppose that in an open simply connected subset U ⊂ R
2 the phase portrait of a

vector field X does not exhibit any critical points or periodic orbits, then there exists a function f
on U such that ∇f is orbitally equivalent to X.

Proof. Consider the distribution of vector fields {Xx}x∈U . Since X(x) �= 0 for x ∈ U, we can
choose an orthogonal distribution {X⊥

x }x∈U , and since U is simply connected we can suppose this
distribution to be smooth. The hypothesis of Frobenius theorem are satisfied, so through every
point x ∈ U it passes a unique curve integrating the distribution {X⊥

x }x∈U . In a neighbourhood V
of any point x ∈ U a function fV can be defined having the curves integrating {X⊥

x }x∈U in V as
level curves. Since the integral curves of a gradient vector field cross the level sets of its potential
orthogonally at points which are not fixed points, it follows that the phase portrait in V of ∇fV
coincides with the phase portrait of X|V . Since U is simply connected a function f having the
property required can be defined on the whole U. �

Unfortunately, given a phase portrait exhibiting only saddles and nodes, it does not necessarily
exist a potential f whose gradient field ∇f exhibits that phase portrait. We can state the following
lemma, but not its converse.

Lemma 4.23. If p is a local maximum, minimum or saddle of f, then p is respectively an unstable
node, a stable node or a saddle of ∇f .

Proof. It is a consequence of the definition of node and saddle of a vector field. �



G. Marelli / Journal of Geometry and Physics 56 (2006) 1688–1708 1705

Fig. 12. Phase portrait of ∇F ( , t) and level curves of F ( , t) for −1 ≤ t < 0.

Lemma 4.24. Suppose f : R
2 → R is a function such that ∇f is a Morse–Smale vector field

exhibiting two saddles, then there exists a function F : R
2 × [−1, 1] → R such that F ( ,−1) =

f,∇F ( , t) is a Morse–Smale vector field exhibiting two saddles for every t �= 0, and ∇F ( , 0) has
a saddle-to-saddle separatrix.

Proof. Lemma 4.23 tells which behaviour the level curves of F ( , t) have in a neighbourhood of
saddles, and moreover we know these level curves are orthogonal to the separatrices of the saddles.
In Fig. 12, the saddles st1 and st2 of ∇F ( , t), their separatrices, denoted by ati and bti, i = 1, 2, and
some of the relevant level curves of F ( , t) (the red lines), for −1 ≤ t < 0, are shown.

In Fig. 13, the phase portrait of ∇F ( , t) and some of the relevant level curves of F ( , t) for
respectively t = 0 and 0 < t ≤ 1, are shown. The saddle-to-saddle separatrix is denoted by a0.

To construct the functions F ( , t), we first choose two points in R
2, in whose neighbourhoods

we define, according to Lemma 4.23, F ( , t) in such a way that these points are saddles; then,
we set F (x, t) = f (x) for every x ∈ R

2 \ A and t ∈ [−1, 1], where A ⊂ R
2 is a neighbourhood,

shown in Fig. 14, of the line chosen as the saddle-to-saddle separatrix of F (0, t).
We define the level curves of F ( , t) in a neighbourhood of ati as the fibres of the normal bundle

to ati and extend then F ( , t) to the whole A (see Fig. 15): this means to require that the derivatives
of F ( , t) in the direction normal to the separatrices ati vanish at any point of the separatrices ati

∂F ( , t)

∂(ati)
⊥ (ati(s)) = 0

Fig. 13. Phase portrait of ∇F ( , t) and level curves of F ( , t) for t = 0 and 0 < t ≤ 1 respectively.
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Fig. 14. The subset A.

By construction, ∇F ( , t) has the required properties. �

Observe that, for each t, the conditions defining the function F ( , t) concerns only those points
which we choose as critical points or belonging to separatrices in A.

Corollary 4.25. Suppose f : R
2 → R is a function such that ∇f is a Morse–Smale vector field

exhibiting two saddles, then there exists a function F : R
2 ×D2 → R, where D2 = {t21 + t22 ≤

1} ⊂ R
2, such that F ( , 0,−1) = f,∇F ( , t1, t2) is a Morse–Smale vector field exhibiting two

saddles for every t2 �= 0, and ∇F ( , t1, 0) has a saddle-to-saddle separatrix.

Proof. The requirement that the family F ( , t1, t2) exhibits a saddle-to-saddle separatrix along
the subset {t2 = 0} ⊂ D2 is compatible with what said about the dimension of components of the
bifurcation locus. The proof is as for Lemma 4.24, where it is not used the fact that the parameters
space has dimension 1. �

Lemma 4.26. Given a bifurcation diagram exhibiting a bifurcation lineB, there exists a family of
gradient vector fields in a neighbourhood of B having only two saddles and with B as associated
bifurcation diagram.

Fig. 15. The construction of F.
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Proof. By Lemma 4.23 we choose a family of functions having two saddles points and we apply
Corollary 4.25. �

The following corollary makes global the result of Lemma 4.26.

Corollary 4.27. Given an allowed bifurcation diagram B, there exists a family of gradient vector
fields having B as associated bifurcation diagram.

Proof. It is enough to apply Lemma 4.26 in a neighbourhood of each component Bij of the
bifurcation locus. �

The second step is to prove that the family of vector fields of Corollary 4.27 can be chosen
depending linearly on the parameter x.

Definition 4.28. A bifurcation diagramM is a subset of a bifurcation diagramN if the bifurcation
locus of M is a subset of the bifurcation locus of N.

Definition 4.29. Two bifurcation diagrams M and N are equivalent if there exists a diffeomor-
phism of R

2 mapping caustic and bifurcation locus of M onto those of N.

Theorem 4.30. Let f : R
2 → R be the generating function of a Lagrangian submanifold L,

suppose 0 ∈ R
2 is a critical point of f and W is a compact neighbourhood of 0. Given a bifurcation

diagram M containing a caustic K and a bifurcation locus B, such that the number of connected
components of f (W) \ (B ∪K) is finite, M is allowed and K is diffeomorphic to the caustic of
a small perturbation of f in W, then, if W is sufficiently small, there exists a generating function
f̃ = f + f ′, such that f ′ is supported on W, and whose associated bifurcation diagram, restricted
to W, contains a subdiagram equivalent to M restricted to W.

Proof. Let Ui be the connected components of f (W) \ (B ∪K): note that Ui is open and choose
a point xi ∈ Ui. The bifurcation diagram M, being allowed, prescribes the classes of orbital
equivalence of the phase portrait of ∇f̃ xi in each subset Ui, so we define a function f̃ xi such
that number and nature of its critical points and behaviour of gradient lines joining each pair
of these critical points are as assigned by M. The function f̃ xi is constructed as F ( , t) in the
proof of Proposition 4.24, so, for f̃ xi to satisfy the required conditions, it is enough to define it
in a neighbourhood Vi of the chosen critical points and relevant gradient lines. Observe that we
can assume Vi ∩ Vj = ∅ for i �= j, since the number of Vi’s is finite. Define now f̃ on ∪Ui as
f̃ (y) = f̃ xi (y) + xiy and extend it to the whole W. Note that for every ε > 0, since ∇f (0) = 0 and
the conditions f̃ has to satisfy concern its gradient ∇f̃ , if W is sufficiently small, then |f ′| < ε,
where | | is a quasi-norm associated with the Whitney topology of C∞(R2). Observe also that,
since ∇f̃ xi is structurally stable on Vi, then there exists a neighbourhood U ′

i of xi in Ui such that
∇f̃ x is orbitally equivalent to ∇f̃ xi for all x ∈ U ′

i . The function f̃ has the required properties:
indeed, by choosing ε sufficiently small, the caustic of f̃ is diffeomorphic to the caustic K in
M; moreover, take a path c : [−1, 1] → W such that c(0) = xi, c(1) = xj and c(t) ∈ B for some
t ∈ [−1, 1], then, as in the proof of Proposition 4.10, there exists a point t′ ∈ [−1, 1] such that
c(t′) is a bifurcation point for f̃ . �
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